此,更好的选择还是投靠即将取胜的一方,所以他会投赞成票。最后,假如只有1票赞成,他愿意投赞成票换取2比2的平局。因为他可以自信地预计到最后一个人会投赞成票,并且他们两人将合作得非常漂亮。
这么一来,最早投票的两名董事就陷人了困境。他们可以预计到,哪怕他们都投反对票,最后两人还是会跟他们作对,这项提议还是会获得通过。既然他们无法阻止这项提议通过,还是随大流换取某些补偿比较好。这个案例证明了倒后推理的威力。当然了,这一技巧同样有助于设计一项狡猾的方案。
5 .糊涂取胜
第2
章介绍了参与者有序行动且在一个确定数目的行动之后结束的博弈。从理论上说,我们可以探讨行动的每一种可能顺序,从而发现其中的最佳策略。这对于画井字的连城游戏是比较容易做到的,但对于象棋却几乎不大可能(至少目前是这样)。以下的博弈尚未发现最佳策略。不过,即便我们不知道最佳策略,但存在最佳策略的事实已经足以显示先行者必将取胜。
ZECK是一种两个人玩的画点游戏,目标是把最后一个点留给你的对手。这个游戏由一系列排成矩形的点开始,比如下面的7x4
矩形(如图13-1所示):·······图13-1每一回合,参与者移走一点以及位于这一点东北方的所有的点。假如第一名参与者选中第二行的第四点,那么,留给他的对手的局面就变成图13-2:··········图13-2每次必须至少移走一点。被迫移走最后一点的人算输。
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.tantanread.com
(>人<;)