个游戏?
案例讨论这是光滑斜坡的又一个例子。一旦你开始向下滑,你就很难回头。最好不要迈出第一步,除非你知道自己会去到哪里。
这个游戏或博弈有一个均衡,即从1美元起拍,且没有人再追加叫价。不过,假如起拍价低于1美元又如何?这样的层层加价可是没完没了,惟一的上限就是你钱包里的数目。至少在你掏空钱包之后竞争不得不停止。这正是我们需要用到法则1——向前展望、倒后推理的地方。
假定伊莱和约翰是两个学生,现在参加舒比克的1美元拍卖。每人各揣着2.50美元,而且都知道对方兜里有多少钱。[6]为了简化叙述,我们改以10美分为叫价单位。
从结尾倒推回来,如果伊莱叫了2.50美元,他将赢得这张1美元钞票(同时却亏了1.50美元)。如果他叫了2.40美元,那么约翰只有叫2.50
美元才能取胜。因为多花1美元去赢1美元并不划算,如果约翰现在的价位是1.50美元或1.50美元以下,伊莱只要叫2.40美元就能取胜。
如果伊莱叫2.30美元,上述论证照样行得通。约翰不可能指望叫2.40美元就可以取胜,因为伊莱一定会叫2.50美元进行反击。要想击败2.30美元的叫价,约翰必须一直叫到2.50美元。因此,2.30美元的叫价足以击败1.50美元或1.50美元以下的叫价。同样,我们可以证明2.20美元、2.10美元一直到1.60美元的叫价可以取胜。如果伊莱叫了1.60美元,约翰应该预见到伊莱不会放弃,非等到价位升到2
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.tantanread.com
(>人<;)