电脑版
首页

搜索 繁体

第六百三十三章

热门小说推荐

最近更新小说

<!--go-->

对于这个神经网络的训练过程,就是要确定这11935个参数。

训练的目标可以粗略概括为:对于每一个训练样本,对应的输出无限接近于1,而其它输出无限接近于0。

根据MichaelNielsen给出的实验结果,以上述网络结构为基础,在未经过调优的情况下,可以轻松达到95%的正确识别率。而核心代码只有74行!

在采用了深度学习的思路和卷积网络(convolutionalnetworks)之后,最终达到了99.67%的正确识别率。而针对MNIST数据集达到的历史最佳成绩是99.79%的识别率,是由LiWan,MatthewZeiler,SixinZhang,YannLeCun,和RobFergus在2013年做出的。

考虑到这个数据集里还有一些类似如下这样难以辨认的数字,这个结果是相当惊人的!它已经超越了真正人眼的识别了。

在这个过程中一步步调整权重和偏置参数的值,就必须引入梯度下降算法(gradientdescent)。

在训练的过程中,我们的神经网络需要有一个实际可行的学习算法,来逐步调整参数。

而最终的目的,是让网络的实际输出与期望输出能够尽量接近。我们需要找到一个表达式来对这种接近程度进行表征。这个表达式被称为代价函数(costfunction)

Loading...

未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。

尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!

移动流量偶尔打不开,可以切换电信、联通、Wifi。

收藏网址:www.tantanread.com

(>人<;)