最重要的求解环节已经过去,接下来,只需按部就班即可。
庞学林不疾不徐地在白板上写着。
……
【爱因斯坦引力场方程的解析解,通过球对称和态的位型分类,由简单关系式对应参数n的每一个积分值,能给出场方程的解析解。由于解的物理相关性,压强和密度都是有限正值,P/ρ及dp/dρ均应沿其中心向外直到其结构表面而减小。均方程线元为:ds^2=g00dt^2+gk1dx^kdx^1(k,l=1,2,3);g00=e^γ(r),g11=e^α(r),g22=-r^2;g33=-r^2sin^2θ,gk1=0(k≠1)……】
……
【对于n=1,解恒等于Tolman第四解,对于n=2,当在球中心时,P/ρ具有最大值,反之,P/ρ之值随r值的增加而减小。n=1,n=2两解对dp/dρ的特性无规律,不适用于中子星,对n=3,u的所有值,P/ρ的值随r的增大而减小,中心与表面密度最大比值ρ0/ρs=4.5。综上所述,对于爱因斯坦引力场方程Ruv-1/2guvR=8πG/c^4×Tuv,其解析解如下……】
……
顺利求解!
庞学林丢下记号笔,转过身道:“这便是庞氏几何法求解爱因斯坦引力场方程的全过程,这种方法,可以推广到所有非线性偏微分方程求解的问题上。当然,解析解的出现,并不意味着所有非线性方程都拥有精确解,但毫无疑问,通过求解非线性方程的解析解,可以大幅度提高非线性方程精确解的精度。”
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.tantanread.com
(>人<;)